Домой / Приусадебные работы / Высшая математика для чайников, или с чего начать? Анализ математический Что входит в курс математического анализа.

Высшая математика для чайников, или с чего начать? Анализ математический Что входит в курс математического анализа.

Лейбниц и его ученики

Эти определения поясняются геометрически, при этом на рис. бесконечно малые приращения изображены конечными. Рассмотрение опирается на два требования (аксиомы). Первое:

Требуется, чтобы две величины, отличающиеся друг от друга лишь на бесконечно малую величину, можно было брать [при упрощении выражений?] безразлично одну вместо другой.

Продолжение каждой такой линии называется касательной к кривой. Исследуя касательную, проходящую через точку , Лопиталь придаёт большое значение величине

,

достигающее экстремальных значений в точках перегиба кривой, отношению же к не придаётся никакого особого значения.

Примечательно нахождение точек экстремума . Если при непрерывном увеличении диаметра ордината сначала возрастает, а затем убывает, то дифференциал сначала положителен по сравнению с , а потом отрицателен.

Но всякая непрерывно возрастающая или убывающая величина не может превратиться из положительной в отрицательную, не проходя через бесконечность или нуль… Отсюда следует, что дифференциал наибольшей и наименьшей величины должен равняться нулю или бесконечности.

Вероятно, эта формулировка не безупречна, если вспомнить о первом требовании: пусть, скажем, , тогда в силу первого требования

;

в нуле правая часть равна нулю, а левая нет. Видимо следовало сказать, что можно преобразовать в соответствии с первым требованием так, чтобы в точке максимума . . В примерах все само собой понятно, и лишь в теории точек перегиба Лопиталь пишет, что равен нулю в точке максимума, будучи разделён на .

Далее, при помощи одних дифференциалов формулируются условия экстремума и рассмотрено большое число сложных задач, относящихся в основном к дифференциальной геометрии на плоскости. В конце книги, в гл. 10, изложено то, что теперь называют правилом Лопиталя , хотя и в не совсем обычной форме. Пусть величина ординаты кривой выражена дробью, числитель и знаменатель которой обращаются в нуль при . Тогда точка кривой с имеет ординату , равную отношению дифференциала числителя к дифференциалу знаменателя, взятому при .

По замыслу Лопиталя написанное им составляло первую часть Анализа, вторая же должна была содержать интегральное исчисление, то есть способ отыскания связи переменных по известной связи их дифференциалов. Первое его изложение дано Иоганном Бернулли в его Математических лекциях о методе интеграла . Здесь дан способ взятия большинства элементарных интегралов и указаны методы решения многих дифференциальных уравнений первого порядка.

Указывая на практическую полезность и простоту нового метода Лейбниц писал:

То, что человек, сведущий в этом исчислении, может получить прямо в трёх строках, другие учёнейшие мужи принуждены были искать, следуя сложными обходными путями.

Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера . Изложение анализа открывает двухтомное «Введение», где собраны изыскания о различных представлениях элементарных функций. Термин «функция» впервые появляется лишь в у Лейбница , однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция - это выражение для счёта (нем. Rechnungsausdrϋck ) или аналитическое выражение .

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этой переменного количества и чисел или постоянных количеств.

Подчёркивая, что «основное различие функций лежит в способе составления их из переменного и постоянных», Эйлер перечисляет действия, «посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислением». Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа . В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы - показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций - взятия логарифма и экспоненты .

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

Полагая и , он получает

,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне). В XIX веке с подачи Казорати это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа .

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что «бесконечно малое количество есть точно нуль», более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона - формула Тейлора . Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение , которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Та функция, дифференциал которой , называется его интегралом и обозначается знаком , поставленным спереди.

В целом же эта часть трактата Эйлера посвящена более общей с современной точки зрения задаче об интегрировании дифференциальных уравнений. При этом Эйлер находит ряд интегралов и дифференциальных уравнений, которые приводят к новым функциям, напр., -функции, эллиптические функции и т. д. Строгое доказательство их неэлементарности было дано в 1830-х годах Якоби для эллиптических функций и Лиувиллем (см. элементарные функции).

Лагранж

Следующим крупным произведением, сыгравшим значительную роль в развитии концепции анализа, явилась Теория аналитических функций Лагранжа и обширный пересказ работ Лагранжа, выполненный Лакруа в несколько эклектической манере.

Желая избавиться от бесконечно малого вовсе, Лагранж обратил связь между производными и рядом Тейлора. Под аналитической функцией Лагранж понимал произвольную функцию, исследуемую методами анализа. Саму функцию он обозначил как , дав графический способ записи зависимости - ранее же Эйлер обходился одними переменными. Для применения методов анализа по мнению Лагранжа необходимо, чтобы функция разлагалась в ряд

,

коэффициенты которого будут новыми функциями . Остаётся назвать производной (дифференциальным коэффициентом) и обозначить его как . Таким образом, понятие производной вводится на второй странице трактата и без помощи бесконечно малых. Остаётся заметить, что

,

поэтому коэффициент является удвоенной производной производной , то есть

и т. д.

Такой подход к трактовке понятия производной используется в современной алгебре и послужил основой для создания теории аналитических функций Вейерштрасса .

Лагранж оперировал такими рядами как формальными и получил ряд замечательных теорем. В частности, впервые и вполне строго доказал разрешимость начальной задачи для обыкновенных дифференциальных уравнений в формальных степенных рядах.

Вопрос об оценке точности приближений, доставляемых частными суммами ряда Тейлора, впервые был поставлен именно Лагранжем: в конце Теории аналитических функций он вывел то, что теперь называют формулой Тейлора с остаточным членом в форме Лагранжа. Однако, в противоположность современным авторам, Лагранж не видел нужды в употреблении этого результата для обоснования сходимости ряда Тейлора.

Вопрос о том, действительно ли функции, употребимые в анализе, могут быть разложены в степенной ряд, впоследствии стал предметом дискуссии. Конечно, Лагранжу было известно, что в некоторых точках элементарные функции могут не разлагаться в степенной ряд, однако в этих точках они и недифференцируемы ни в каком смысле. Коши в своём Алгебраическом анализе привёл в качестве контрпримера функцию

доопределённую нулём в нуле. Эта функция всюду гладкая на вещественной оси и в нуле имеет нулевой ряд Маклорена, который, следовательно, не сходится к значению . Против этого примера Пуассон возразил, что Лагранж определял функцию как единое аналитическое выражение, в примере Коши же функция задана по разному в нуле, и при . Лишь в конце XIX века Прингсхейм доказал, что существует бесконечно дифференцируемая функция, заданная единым выражением, ряд Маклорена для которой расходится. Пример такой функцией доставляет выражение

.

Дальнейшее развитие

В последней трети XIX века Вейерштрасс произвёл арифметизацию анализа, полагая геометрическое обоснование недостаточным, и предложил классическое определение предела через ε-δ-язык. Он же создал первую строгую теорию множества вещественных чисел . В это же время попытки усовершенствования теоремы об интегрируемости по Риману привели к созданию классификации разрывности вещественных функций. Также были открыты «патологические» примеры (нигде не дифференцируемые непрерывные функции , заполняющие пространство кривые). В связи с этим Жордан разработал теорию меры , а Кантор - теорию множеств , и в начале XX века математический анализ был формализован с их помощью. Другим важным событием XX века стала разработка нестандартного анализа как альтернативного подхода к обоснованию анализа.

Разделы математического анализа

  • Метрическое пространство , Топологическое пространство

См. также

Библиография

Энциклопедические статьи

  • // Энциклопедический лексикон : Спб.: тип. А. Плюшара, 1835-1841. Том 1-17.
  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

Учебная литература

Стандартные учебники

На протяжении многих лет в России популярны следующие учебники:

  • Курант, Р. Курс дифференциального и интегрального исчисления (в двух томах). Главная методическая находка курса: сначала попросту излагаются основные идеи, а затем им даются строгие доказательства. Написан Курантом в его бытность профессором Геттингенского университета в 1920-х под влиянием идей Клейна , затем в 1930-х перенесён на американскую почву. Русский перевод 1934 г. и его переиздания дает текст по немецкому изданию, перевод 1960-х годов (т. н. 4-ое издание) представляет собой компиляцию из немецкой и американской версии учебника и в связи с этим весьма многословен.
  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления (в трёх томах) и задачник.
  • Демидович Б. П. Сборник задач и упражнений по математическому анализу.
  • Ляшко И. И. и др. Справочное пособие по высшей математике, т. 1-5.

Некоторые ВУЗы имеют собственные руководства по анализу:

  • МГУ , МехМат:
  • Архипов Г. И., Садовничий В. А., Чубариков В. Н. Лекции по мат. анализу.
  • Зорич В. А. Математический анализ. Часть I. М.: Наука, 1981. 544 с.
  • Зорич В. А. Математический анализ. Часть II. М.: Наука, 1984. 640 с.
  • Камынин Л. И. Курс математического анализа (в двух томах). М.: Издательство Московского Университета, 2001.
  • В. А. Ильин , В. А. Садовничий , Бл. Х. Сендов . Математический анализ / Под ред. А. Н. Тихонова . - 3-е изд. , перераб. и доп. - М .: Проспект, 2006. - ISBN 5-482-00445-7
  • МГУ , физфак:
  • Ильин В. А. , Позняк Э. Г. Основы математического анализа (в двух частях). - М .: Физматлит, 2005. - 648 с. - ISBN 5-9221-0536-1
  • Бутузов В. Ф. и др. Мат. анализ в вопросах и задачах
  • Математика в техническом университете Сборник учебных пособий в 21 томе.
  • СПбГУ , физфак:
  • Смирнов В. И. Курс высшей математики, в 5 томах. М.: Наука, 1981 (6-е издание), БХВ-Петербург, 2008 (24-е издание).
  • НГУ , мехмат:
  • Решетняк Ю. Г. Курс математического анализа. Часть I. Книга 1. Введение в математический анализ. Дифференциальное исчисление функций одной переменной. Новосибирск: Изд-во Ин-та математики, 1999. 454 с ISBN 5-86134-066-8 .
  • Решетняк Ю. Г. Курс математического анализа. Часть I. Книга 2. Интегральное исчисление функций одной переменной. Дифференциальное исчисление функций многих переменных. Новосибирск: Изд-во Ин-та математики, 1999. 512 с ISBN 5-86134-067-6 .
  • Решетняк Ю. Г. Курс математического анализа. Часть II. Книга 1. Основы гладкого анализа в многомерных пространствах. Теория рядов. Новосибирск: Изд-во Ин-та математики, 2000. 440 с ISBN 5-86134-086-2 .
  • Решетняк Ю. Г. Курс математического анализа. Часть II. Книга 2. Интегральное исчисление функций многих переменных. Интегральное исчисление на многообразиях. Внешние дифференциальные формы. Новосибирск: Изд-во Ин-та математики, 2001. 444 с ISBN 5-86134-089-7 .
  • Шведов И. А. Компактный курс математического анализа, : Часть 1. Функции одной переменной , Часть 2. Дифференциальное исчисление функций многих переменных .
  • МФТИ , Москва
  • Кудрявцев Л. Д. Курс математического анализа (в трех томах).
  • БГУ , физфак:
  • Богданов Ю. С. Лекции по математическому анализу (в двух частях). - Минск: БГУ, 1974. - 357 с.

Учебники повышенной сложности

Учебники:

  • Рудин У. Основы математического анализа. М., 1976 - небольшая книга, написана очень чётко и сжато.

Задачники повышенной сложности:

  • Г.Полиа, Г.Сеге, Задачи и теоремы из анализа. Часть 1 , Часть 2 , 1978. (Большая часть материала относится к ТФКП)
  • Pascal, E. (Napoli). Esercizii, 1895; 2 ed., 1909 // Internet Archiv

Учебники для гуманитарных специальностей

  • А. М. Ахтямов Математика для социологов и экономистов. - М. : Физматлит, 2004.
  • Н. Ш. Кремер и др. Высшая математика для экономистов. Учебник. 3-е изд. - М. : Юнити, 2010

Задачники

  • Г. Н. Берман. Сборник задач по курсу математического анализа: Учебное пособие для вузов. - 20-е изд. М.:Наука. Главная редакция физико-математической литературы, 1985. - 384 с.
  • П. Е. Данко, А. Г. Попов, Т. Я. Кожевников. Высшая математика в упражнениях и задачах. (В 2-х частях)- М.: Высш.шк, 1986.
  • Г. И. Запорожец Руководство к решению задач по математическому анализу. - М.: Высшая школа, 1966.
  • И. А. Каплан. Практические занятия по высшей математике, в 5 частях.. - Харьков, Изд. Харьковского гос. ун-та, 1967, 1971, 1972.
  • А. К. Боярчук, Г. П. Головач. Диференциальные уравнения в примерах и задачах. Москва. Едиториал УРСС, 2001.
  • А. В. Пантелеев, А. С. Якимова, А. В. Босов. Обыкновенные дифференциальные уравнения в примерах и задачах. «МАИ», 2000
  • А. М. Самойленко, С. А. Кривошея, Н. А. Перестюк. Дифференциальные уравнения: примеры и задачи. ВШ, 1989.
  • К. Н. Лунгу, В. П. Норин, Д. Т. Письменный, Ю.А Шевченко. Сборник задач по высшей математике. 1 курс. - 7-е изд. - М.: Айрис-пресс, 2008.
  • И. А. Марон. Дифференциальное и интегральное исчисление в примерах и задачах (Функции одной переменной). - М., Физматлит, 1970.
  • В. Д. Черненко. Высшая математика в примерах и задачах: Учебное пособие для вузов. В 3 т. - СПб.: Политехника, 2003.

Справочники

Классические произведения

Сочинения по истории анализа

  • Кестнер, Авраам Готтгельф . Geschichte der Mathematik. 4 тома, Геттинген, 1796-1800
  • Кантор, Мориц . Vorlesungen über geschichte der mathematik Leipzig: B. G. Teubner, - . Bd. 1 , Bd. 2 , Bd. 3 , Bd. 4
  • История математики под редакцией А. П. Юшкевича (в трёх томах):
  • Том 1 С древнейших времен до начала Нового времени. (1970)
  • Том 2 Математика XVII столетия. (1970)
  • Том 3 Математика XVIII столетия. (1972)
  • Маркушевич А. И. Очерки по истории теории аналитических функций. 1951
  • Вилейтнер Г. История математики от Декарта до середины XIX столетия. 1960

Примечания

  1. Ср., напр.,курс Cornell Un
  2. Ньютон И. Математические работы . M, 1937.
  3. Leibniz //Acta Eroditorum, 1684. L.M.S., т. V, c. 220-226. Рус. пер.: Успехи Мат. Наук, т. 3, в. 1 (23), с. 166-173.
  4. Лопиталь. Анализ бесконечно малых . М.-Л.:ГТТИ, 1935. (Далее: Лопиталь) // Мат. анализ на EqWorld
  5. Лопиталь, гл. 1, опр. 2.
  6. Лопиталь, гл. 4, опр. 1.
  7. Лопиталь, гл. 1, требование 1.
  8. Лопиталь, гл. 1, требование 2.
  9. Лопиталь, гл. 2, опр.
  10. Лопиталь, § 46.
  11. Лопиталь беспокоится о другом: для него длина отрезка и нужно пояснить, что значит её отрицательность. Замечание, сделанное в § 8-10, можно даже понять так, что при убывании с ростом следует писать , однако далее это не используется.
  12. Bernulli, Johann. Die erste Integrelrechnunug. Leipzig-Berlin, 1914.
  13. См.: Успехи Мат. Наук, т. 3, в. 1 (23)
  14. См. Маркушевич А. И. Элементы теории аналитических функций , Учпедгиз, 1944. С. 21 и сл.; Koenig F. Kommentierender Anhang zu Funktionentheorie von F. Klein . Leipzig: Teubner, 1987; а также Исторический очерк в статье Функция
  15. Эйлер. Введение в анализ . Т. 1. Гл. 1, § 4
  16. Эйлер. Введение в анализ . Т. 1. Гл. 1, § 6

Нагромождение страшных формул, пособия по высшей математике, которые откроешь и тут же закроешь, мучительные поиски решения казалось бы совсем простой задачи…. Подобная ситуация не редкость, особенно когда учебник по математике последний раз открывался в далеком 11 классе. А между тем, в ВУЗах учебные планы многих специальностей предусматривают изучение всеми любимой высшей математики. И в этой ситуации нередко ощущаешь себя полным чайником перед нагромождением ужасной математической абракадабры. Причем, похожая ситуация может сложиться при изучении любого предмета, особенно из цикла естественных наук.

Что делать? Для студента-очника всё значительно проще, если, конечно, предмет не сильно запущен. Можно проконсультироваться у преподавателя, одногруппников, да и просто списать у соседа по парте. Даже полный чайник в высшей математике при таких раскладах сессию переживет.

А если человек учится на заочном отделении ВУЗа, и высшая математика, мягко говоря, в будущем вряд ли потребуется? К тому же совсем нет времени на занятия. Так-то оно, в большинстве случаев так, но никто не отменял выполнение контрольных работ и сдачу экзамена (чаще всего, письменного). С контрольными работами по высшей математике все проще, чайник ты, или не чайник – контрольную работу по математике можно заказать . Например, у меня. И по остальным предметам тоже можно заказать. Уже не здесь. Но выполнение и сдача на рецензию контрольных работ еще не приведет к заветной записи в зачетной книжке. Часто бывает, что произведение искусства, выполненное на заказ, нужно защищать, и объяснить, почему из этих буковок следует вон та формула. Кроме того, предстоят экзамены, а там уже придется решать определители, пределы и производные САМОСТОЯТЕЛЬНО. Если, конечно, преподаватель не принимает ценные подарки, или нет нанятого доброжелателя за стенами аудитории.

Позвольте, дам очень важный совет. На зачетах, экзаменах по точным и естественным наукам ОЧЕНЬ ВАЖНО ХОТЬ ЧТО-ТО ПОНИМАТЬ. Запомните, ХОТЬ ЧТО-ТО. Полное отсутствие мыслительных процессов просто бесит преподавателя, мне известны случаи, когда студентов-заочников заворачивали по 5-6 раз. Помнится, один молодой человек сдавал контрольную работу 4 раза, и после каждой пересдачи обращался ко мне за бесплатной гарантийной консультацией. В конце концов, я заметил, что в ответе он вместо буквы «пи» писал букву «пэ», за что и последовали жесткие санкции со стороны рецензента. Студент ДАЖЕ НЕ ХОТЕЛ ВНИКАТЬ в задание, которое он небрежно переписал

Можно быть полным чайником в высшей математике, но крайне желательно знать, что производная константы равна нулю. Потому что, если Вы ответите какую-нибудь глупость на элементарный вопрос, то велика вероятность того, что на этом учеба в ВУЗе для Вас закончится. Преподаватели гораздо благосклоннее относятся к тому студенту, который ХОТЯ БЫ ПЫТАЕТСЯ разобраться в предмете, к тому, кто, пусть и ошибочно, но пробует что-либо решить, объяснить или доказать. И это утверждение справедливо для всех дисциплин. Поэтому следует решительно отмести позицию «я ничего не знаю, я ничего не понимаю».

Второй важный совет – ПОСЕЩАТЬ ЛЕКЦИИ, даже если их немного. Об этом я уже упоминал на главной странице сайта Математика для заочников . Повторяться нет смысла, почему это ОЧЕНЬ важно, читайте там.

Итак, что же делать, если на носу зачет, экзамен по высшей математике, а дела плачевны – состояние полного, а точнее говоря, пустого чайника?

Один из вариантов – нанять репетитора. С крупнейшей базой репетиторов можно ознакомиться (преимущественно, Москва) или (преимущественно, Санкт-Петербург). По поисковой системе вполне вероятно найти репетитора в своем городе, либо посмотреть местные рекламные газеты. Цена на услуги репетитора может варьироваться от 400 и более рублей за час в зависимости от квалификации преподавателя. Следует отметить, что дёшево – это не значит плохо, особенно если у Вас неплохая математическая подготовка. В то же время за 2-3К рублей Вы и получите НЕМАЛО. Зря таких денег никто не берёт, и напрасно таких денег никто не платит;-). Единственный важный момент – старайтесь выбрать репетитора с профильным педагогическим образованием. И в самом деле, мы же не ходим за юридической помощью к стоматологу.

В последнее время набирает популярность сервис онлайн репетиторов . Он очень удобен, когда необходимо срочно решить одну-две задачи, разобраться в теме или подготовиться к экзамену. Безусловным преимуществом являются цены, которые в несколько раз ниже, чем у оффлайн репетитора + экономия времени на проезд, что особенно актуально для жителей мегаполисов.

В курсе высшей математики некоторые вещи без репетитора освоить весьма трудно, нужно именно «живое» объяснение.

Тем не менее, во многих типах задач вполне можно разобраться самостоятельно, и, цель данного раздела сайта – научить Вас решать типовые примеры и задачи, которые практически всегда встречаются на экзаменах. Более того, для ряда заданий существуют «жёсткие» алгоритмы, где от правильного решения вообще «никуда не деться». И, в меру моих знаний, я попытаюсь Вам помочь, тем более есть педагогическое образование и опыт работы по специальности.

Начнем разгребать математические абракадабры. Ничего страшного, даже если Вы чайник, высшая математика – это действительно просто и действительно доступно.

А начать нужно с повторения школьного курса математики. Повторение – мать мучения.

Прежде чем, Вы приступите к изучению моих методических материалов, да и вообще приступите к изучению любых материалов по высшей математике, я НАСТОЯТЕЛЬНО РЕКОМЕНДУЮ, прочитать нижеследующее .

Для того чтобы успешно решать задачи по высшей математике НЕОБХОДИМО:

ЗАПАСИТЕСЬ МИКРОКАЛЬКУЛЯТОРОМ.

Из программ – Эксель (отличный выбор!). Мануал для «чайников» я загрузил в библиотеку .


Есть? Уже хорошо.


От перестановки слагаемых – сумма не меняется : .
А вот это совершенно разные вещи:

Переставлять «икс» и «четверку» просто так нельзя. Заодно вспоминаем культовую букву «икс», которая в математике обозначает неизвестную или переменную величину.

От перестановки множителей – произведение не меняется : .
С делением такой фокус не пройдет, и – это две совершенно разные дроби и перестановка числителя со знаменателем без последствий не обходится.
Также вспоминаем, что знак умножения («точкy») чаще всего принято не писать: ,


Вспоминаем правила раскрытия скобок :
– здесь знаки у слагаемых не меняются
– а здесь меняются на противоположные.
И для умножения:

Вообще, достаточно помнить, что ДВА МИНУСА ДАЮТ ПЛЮС , а ТРИ МИНУСА – ДАЮТ МИНУС . И, постараться при решении задач по высшей математике в этом НЕ ЗАПУТАТЬСЯ (очень частая и досадная ошибка).


Вспоминаем приведение подобных слагаемых , Вы должны хорошо понимать следующее действие:


Вспоминаем что такое степень :

, , , .

Степень – это всего лишь обычное умножение.


Вспоминаем, что дроби можно сокращать : (сократили на 2), (сократили на пять), (сократили на ).


Вспоминаем действия с дробями :


а также, очень важное правило приведения дробей к общему знаменателю:

Если данные примеры малопонятны, смотрите школьные учебники.
Без этого ТУГО будет.

СОВЕТ : все ПРОМЕЖУТОЧНЫЕ вычисления в высшей математике лучше проводить в ОБЫКНОВЕННЫХ ПРАВИЛЬНЫХ И НЕПРАВИЛЬНЫХ ДРОБЯХ, даже если будут получаться страшные дроби вроде . Вот эту вот дробь НЕ НАДО представлять в виде , и, тем более, НЕ НАДО делить на калькуляторе числитель на знаменатель, получая 4,334552102….

ИСКЛЮЧЕНИЕМ из правила является конечный ответ задания, вот тогда как раз лучше записать или .


Уравнение . У него есть левая часть и правая часть. Например:

Можно перенести любое слагаемое в другую часть, сменив у него знак :
Перенесем, например, все слагаемые в левую часть:

Или в правую:

Составитель Ю.В.Обрубов

Калуга - 2012

Введение в математический анализ.

Действительные числа. Переменные и постоянные величины.

Одним из основных понятий математики является число. Положительные числа 1,2,3, … , которые получаются при счете, называются натуральными. Числа … -3,-2,-1,0,1,2,3,… называют целыми. Числа, которые могут быть представлены в виде конечного отношения двух целых чисел (
) называютсярациональными. К ним относятся целые и дробные, положительные и отрицательные числа. Числа, которые представляются бесконечными непериодическими дробями называются иррациональными. Примерами иррациональных чисел служат
,
. В множестве иррациональных чисел выделяюттрансцендентные числа. Это числа, которые являются результатом неалгебраических действий. Наиболее известными из них являются число и неперово число. Числа рациональные и иррациональные называютсядействительными . Действительные числа изображаются точками на числовой оси. Каждой точке на числовой оси соответствует одно единственное действительное число и, наоборот, каждому действительному числу соответствует единственная точка числовой оси. Таким образом, между действительными числами и точками числовой прямой установлено взаимно-однозначное соответствие. Это дает возможность равнозначно употреблять термины “число а” и “точка а”.

В процессе изучения различных физических, экономических, социальных процессов часто приходится иметь дело с величинами, представляющими численные значения параметров исследуемых явлений. При этом одни из них изменяются, а другие сохраняют свои значения.

Переменной называется величина, которая принимает различные численные значения. Величина, численное значение которой не изменяется в данной задаче или эксперименте называетсяпостоянной. Переменные величины обычно обозначают латинскими буквами
а постоянные
.

Переменная величина считается заданной, если известно множество значений, которые она может принимать. Это множество называется областью изменения переменной.

Существуют различные виды множеств значений числовой переменной величины.

Интервалом называется множество значений х, заключенных между числамиaиb, при этом числаaиbне принадлежат рассматриваемому множеству. Интервал обозначают: (a,b);a

Отрезком называется множество значений х, заключенных между числами а иb, при этом числа а иbпринадлежат рассматриваемому множеству. Отрезок обозначают ,a≤x≤b.

Множество всех действительных чисел является открытым интервалом. Обозначается: (- ∞,+ ∞), -∞ <х <+∞, R.

Окрестностью точки х 0 называется произвольный интервал (а,b), содержащий точку х 0 , все точки этого интервала удовлетворяют неравенствуa

ε - окрестностью точки а называется интервал с центром в точке а, удовлетворяющий неравенствуa–ε

Функция. Основные определения и понятия.

Функция является одним из основных понятий математического анализа. Пусть Х и У произвольные множества действительных чисел.

Если каждому числу х Х по некоторому правилу или закону постав-лено в соответствие единственное вполне определенное действительное число уУ, то говорят, что заданафункция с областью определения Х и множеством значений У. Обозначают у =f(х). Переменная величина х называетсяаргументом функции.

В определении функции существенны два момента: указание области определения и установление закона соответствия.

Областью определения или областью существования функции называется множество значений аргумента при которых функция существует, то есть имеет смысл.

Областью изменения функции называется множество значений у, которые он принимает при допустимых значениях х.

Способы задания функции.

    Аналитический способ задания функции.

При этом способе задания функции закон соответствия записывается в виде формулы (аналитического выражения), указывающей посредством каких математических преобразований по известному значению аргумента х можно найти соответствующее значение у.

Функция может быть задана одним аналитическим выражением на всей своей области определения или представлять совокупность нескольких аналитических выражений.

Например: у = sin (x 2 + 1)

2. Табличный способ задания функции

В результате непосредственного наблюдения или экспериментального изучения какого-либо явления или процесса в определенном порядке выписываются значения аргумента х и соответствующие им значения у.

Эта таблица определяет функцию у от х.

Примером табличного способа задания функции могут служить таблицы тригонометрических функций, таблицы логарифмов, даты и курсы валют, температура и влажность воздуха и т.д.

3. Графический способ задания функции.

Графический способ задания функции состоит в изображении на координатной плоскости точек (х, у) посредством технических устройств. Графическим способом задания функции в математическом анализе не пользуются, но к графической иллюстрации аналитически заданных функций прибегают всегда.

Сидите в темноте и читаете мои статьи? Поберегите зрение. Если у Вас есть любимое место, скорей всего это кровать, то настенные бра с доставкой по Украине на сайте могут быть подходящим вариантом. Читайте при свете, и берегите зрение.

Всё должно быть изложено так просто, как только возможно, но не проще.
Альберт Эйнштейн

Наше путешествие начнётся со знакомства с вымышленным персонажем, которого мы назовём Джоном Доу. Он является среднестатистическим работником, которого можно легко найти в любом городе мира. Практически каждый день Джон просыпается под громкие звуки будильника и едет на работу на своей машине. Он поднимается на лифте в свой кабинет, где загружает компьютер и вводит логин и пароль. Джон делает все эти вещи без малейшего понятия о том, как они работают.

Возможно, ему было бы интересно узнать о там, как устроены и функционируют устройства и приборы, которыми он пользуется ежедневно, тем не менее, у него нет ни времени, ни сил, чтобы заниматься этим. Он считает автомобили, лифты, компьютеры и будильники совершенно разными и сложными механизмами, которые не имеют между собой ничего общего. По мнению Джона, на то, чтобы понять, как работает каждый из них, нужны годы изучений.

Некоторые люди смотрят на вещи несколько иначе, чем наш Джон Доу. Они знают, что электродвигатели в лифтовых установках очень похожи на автомобильные генераторы переменного тока.

Они знают, что программируемый логический контроллер, управляющий электрическим двигателем, который отвечает за перемещение лифта, очень похож на рабочий компьютер Джона Доу. Они знают, что на фундаментальном уровне принцип работы программируемого логического контроллера, будильника и компьютера основывается на относительно простой транзисторной теории. То, что Джон Доу и среднестатистический человек считают невероятно сложным, для хакера является самым обычным использованием простых механических и электрических принципов. Проблема заключается в том, как эти принципы применяются. Абстрагирование фундаментальных принципов от сложных идей позволяет нам понять и упростить их способом, который воздаёт должное импровизированному совету Альберта Эйнштейна, процитированному выше.

Многие из нас рассматривают математический анализ как нечто сложное. (Таким же Джон Доу считает принцип устройства и функционирования различных механизмов.) Вы видите нагромождение сложных, запутанных вещей. Для того чтобы понять их, Вам нужно немало времени и усилий. Но что, если мы скажем Вам, что математический анализ (исчисление) не такой уж и сложный, каковым кажется на первый взгляд, равно как и большинство механизмов? Что есть несколько основных принципов, которые каждому дано понять, и как только Вы это сделаете, Вам откроется новый взгляд на мир и то, как он устроен?

В обычном учебнике по математическому анализу содержится около одной тысячи страниц. Типичный Джон Доу увидит в нём тысячу трудных для понимания и изучения вещей, а хакер – два основных принципа (производная и интеграл) и 998 примеров этих принципов. Мы вместе попытаемся разобраться, что это за принципы. Основываясь на работе, проделанной Майклом Старбёрдом, профессором Техасского университета в Остине, мы будем использовать повседневные примеры, которые каждый сможет понять. Математический анализ раскрывает особую красоту нашего мира – красоту, которая возникает тогда, когда Вы способны наблюдать её динамически, а не статически. Мы надеемся, что у Вас всё получится.

Перед тем как мы начнём, хотелось бы кратко пройтись по истории возникновения математического анализа, корни которого лежат в очень тщательном разборе изменений и движения.

Парадокс Зенона

Зенон Элейский – философ, живший в IV веке до нашей эры. Он выдвинул несколько тонких, но глубоких парадоксов, два из которых, в конечном итоге, привели к зарождению математического анализа. Для того чтобы решить парадоксы Зенона, человечеству понадобилось более двух тысяч лет. Как Вы понимаете, это было нелегко. Трудности в значительной степени были связаны с идеей бесконечности. Что представляет собой проблема бесконечности с математической точки зрения? В XVII веке Исааку Ньютону и Готфриду Лейбницу удалось решить парадоксы Зенона и создать математический анализ. Давайте внимательно рассмотрим эти парадоксы, чтобы понять, почему вокруг них было столько шумихи.

Стрела

Представьте летящую в воздухе стрелу. Мы можем с большой уверенностью сказать, что стрела находится в движении. А теперь рассмотрим стрелу в определённый момент времени. Она больше не движется, а пребывает в состоянии покоя. Но мы точно знаем, что стрела находится в движении, тогда каким образом она может пребывать в состоянии покоя?! В этом и заключается суть данного парадокса. Он может показаться глупым, однако в действительности это очень сложная концепция, которую следует рассматривать с математической точки зрения.

Позднее мы выясним, что имеем дело с понятием мгновенной скорости изменения, которое мы свяжем с идеей одного из двух принципов математического анализа (исчисления) – производной. Это позволит нам вычислить скорость движения стрелы в определённый момент времени – то, что человечеству не удавалось сделать более двух тысячелетий.

Дихотомия

Давайте снова рассмотрим эту же стрелу. На этот раз представим, что она летит в нашу сторону. Зенон утверждал, что мы не должны двигаться, поскольку стрела никогда не сможет попасть в нас. Представьте, что после того как стрела оказалась в воздухе, ей необходимо преодолеть половину расстояния между луком и мишенью. Как только она достигнет определённой точки на полпути, ей снова будет нужно преодолеть половину расстояния – на этот раз между данной точкой и целью. Представьте себе, что мы будем продолжать так делать. Стрела, таким образом, постоянно преодолевает половину расстояния между началом отсчёта и мишенью. Учитывая это, можно сделать вывод, что стрела никогда не сможет попасть по нам! В реальной жизни стрела, в конечном счёте, достигнет цели, заставив нас гадать над смыслом парадокса.

Как и в случае с первым парадоксом, мы позднее рассмотрим, как решить данную проблему при помощи одного из принципов математического анализа – интеграла. Интеграл позволяет нам рассматривать концепцию бесконечности как математическую функцию. Он является чрезвычайно мощным инструментом, по мнению учёных и инженеров.

Два основных принципа математического анализа

Суть двух фундаментальных принципов математического анализа можно продемонстрировать, применив их для решения парадоксов Зенона.

Производная. Производная – это метод, который позволит нам рассчитать скорость полёта стрелы в парадоксе «Стрела». Мы сделаем это, проанализировав положение стрелы через последовательно уменьшающиеся промежутки времени. Точная скорость стрелы станет известна, когда время между измерениями окажется бесконечно малым.

Интеграл. Интеграл – это метод, который позволит нам вычислить положение стрелы в парадоксе «Дихотомия». Мы сделаем это, проанализировав скорость движения стрелы через последовательно уменьшающиеся промежутки времени. Точное положение стрелы станет нам известно, когда время между измерениями окажется бесконечно малым.

Между производной и интегралом нетрудно заметить некоторое сходство. Обе величины рассчитываются в ходе анализа положения или скорости стрелы через постепенно уменьшающиеся временные интервалы. Позже мы выясним, что интеграл и производная, по сути, являются двумя сторонами одного керамического конденсатора.

Почему мы должны изучать основы математического анализа?

Всем нам известен Закон Ома, который связывает силу тока, напряжение и сопротивление в одно простое уравнение. Сейчас давайте рассмотрим «Закон Ома» на примере конденсатора. Сила тока конденсатора зависит от напряжения и времени. Время в данном случае является критической переменной и должно учитываться в любом динамическом событии. Математический анализ позволяет нам понять и оценить то, как вещи меняются с течением времени. В случае с конденсатором, сила тока равна ёмкости, помноженной на вольты в секунду, или i = C(dv/dt), где:

i – сила тока (мгновенная);
C – ёмкость, которая измеряется в фарадах;
dv – изменение напряжения;
dt – изменение времени.

В данной цепи в конденсаторе нет электрического тока. Вольтметр будет показывать напряжение аккумулятора, а амперметр – ничего. Напряжение не станет меняться до тех пор, пока потенциометр будет оставаться нетронутым. В таком случае i = C(0/dt) = 0 апмер. Но что произойдёт, если мы начнём настраивать потенциометр? Судя по уравнению, в конденсаторе появится результирующая сила тока. Эта сила тока будет зависеть от изменения напряжения, которое связано с тем, насколько быстро двигается потенциометр.

Эти графики показывают связь между напряжением в конденсаторе, силой тока и скоростью, с которой мы крутим потенциометр. Сначала мы делаем это медленно. Увеличение скорости приводит к изменению напряжения, что, в свою очередь, провоцирует резкое увеличение силы тока. На всех этапах сила тока в конденсаторе пропорциональна скорости изменения напряжения в нём.

Математический анализ, или, если быть точнее, производная, даёт нам возможность определить скорость изменений, чтобы мы точно знали значение силы тока в конденсаторе в определённый момент времени. Аналогичным образом мы можем вычислить мгновенную скорость движения стрелы Зенона. Это невероятно мощный инструмент, который обязан быть в Вашем арсенале.

Материал подготовлен специально для сайт - по статье сайта hackaday.com

P.S. Меня зовут Александр. Это мой личный, независимый проект. Я очень рад, если Вам понравилась статья. Хотите помочь сайту? Просто посмотрите ниже рекламу, того что вы недавно искали.

Copyright сайт © - Данная новость принадлежит сайт, и являются интеллектуальной собственностью блога, охраняется законом об авторском праве и не может быть использована где-либо без активной ссылки на источник. Подробнее читать - "об Авторстве"

Вы это искали? Быть может это то, что Вы так давно не могли найти?


Согласно словарю русского языка анализ – это метод научного исследования путём рассмотрения отдельных сторон, свойств, составных частей чего-нибудь. Один из важнейших разделов математики называется математическим анализом , а часто даже просто анализом. Сразу возникает вопрос: что же именно анализируется математическим анализом ? Ответ однозначен – анализу подвергаются функции . Функция (от латинского «функцио» – осуществление) представляет собой зависимость между переменными числовыми величинами .

Поскольку анализ – это метод исследования, возникает второй вопрос: в чём заключается этот метод ? Ответ даёт второе название математического анализа – дифференциальное и интегральное исчисление . Исчислением называется раздел математики, излагающий правила вычислений. Слово «дифференциал » происходит от латинского слова «дифференция», т. е. разность . Слово «интеграл » не имеет такого ясного происхождения («интегер» – целый; «интегро» – восстанавливать), но оно имеет смысл объединения частей в целое, восстановления разбитого на разности. Такое восстановление достигается с помощью суммирования .

Подведём первые итоги:

· Главными объектами , изучаемыми в математическом анализе являются функции .

· Функции – это зависимости различного вида между переменными числовыми величинами .

· Методом математического анализа является дифференцирование – работа с разностями значений функций, и интегрирование – вычисление сумм.

Таким образом, для освоения математического анализа, прежде всего, нужно разобраться с понятием функции. Функция является важнейшим математическим понятием, поскольку функции представляют собой математический способ описания движения и изменения. Функция – это процесс .

Самым важным видом движения является механическое движение по прямой. При движении измеряются расстояния, пройденные объектом, но этого явно недостаточно для полного описания движения. И Ахиллес, и черепаха могут удалиться от исходной точки на одинаковое расстояние, но их движение различается по скорости, а скорость нельзя измерить без измерения времени.

Уже из рассмотрения этого примера становится понятным, что для описания движения и изменения недостаточно одной переменной. Интуитивно ясно, что время меняется равномерно, а расстояние может меняться то быстрее, то медленнее. Движение полностью описано, если в каждый момент времени известно, на какое расстояние объект удалился от точки старта. Итак, при механическом движении возникает соответствие между значениями двух переменных величин – времени, которое меняется независимо ни от чего, и расстояния, которое зависит от времени. Этот факт положен в основу определения функции. При этом две переменные уже не называют временем и расстоянием.

Определение функции: функция это правило или закон , ставящий каждому значению независимой переменной величины х определённое значение зависимой переменной у . Независимая переменная х называется аргументом, а зависимая у – функцией. Иногда говорят, что функция – это зависимость между двумя переменными.

Как наглядно представить, что такое переменная величина? Переменная – это числовая прямая (линейка или шкала), по которой движется точка (термометр или спица с бусинкой). Функция – это механизм из шестерёнок с двумя окошечками х и у. Этот механизм позволяет установить в окошечке х любое значение, а в окошечке у автоматически появится с помощью шестерёнок значение функции.

Задача 1 . Больному измеряют температуру каждый час. Существует функция – зависимость температуры от времени. Как представить эту функцию? Ответ : таблица и график.

Функция непрерывна, как непрерывно движение, но на практике невозможно зафиксировать эту непрерывность. Можно поймать только отдельные значения аргумента и функции. Однако теоретически непрерывность описать всё же удаётся.

Задача 2 . Галилео Галилей обнаружил, что свободно падающее тело за первую секунду проходит единицу расстояния, за вторую – 3 единицы, за третью – 5 и т. д. Определить зависимость времени от расстояния. Указание : вывести общую формулу зависимости пройденного пути от номера расстояния.

Способы задания функций.

Задачи математического анализа .

Переход от одного представления функции к другому (вычисление значений функции, построение приближенных аналитических функций по экспериментальным числовым и графическим данным, исследование функций и построение графиков).

Математическое изучение свойств функции как процесса. Пример 1: поиск скорости по известной функции пути от времени (дифференцирование). Пример 2: поиск пути по известной функции скорости от времени (интегрирование).

| следующая лекция ==>
Твор.п.: Тетрáди проверяютсяХ (кем?) учúтелем |